On a Volume Constrained Variational

نویسندگان

  • Luigi Ambrosio
  • Irene Fonseca
  • Paolo Marcellini
چکیده

Existence of minimizers for a volume constrained energy E(u) := Z W (ru) dx where L N (fu = zig) = i; i = 1; : : : ; P; is proved in the case where zi are extremal points of a compact, convex set in R d and under suitable assumptions on a class of quasiconvex energy densities W. Optimality properties are studied in the scalar-valued problem where d = 1, P = 2, W () = jj 2 , and the ?-limit as the sum of the measures of the 2 phases tends to L N (() is identiied. Minimizers are fully characterized when N = 1, and candidates for solutions are studied for the circle and the square in the plane.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free and constrained equilibrium states in a variational problem on a surface

We study the equilibrium states for an energy functional with a parametric force field on a region of a surface. Consideration of free equilibrium states is based on Lyusternik - Schnirelman's and Skrypnik's variational methods. Consideration of equilibrium states under a constraint of geometrical character is based on an analog of Skrypnik's method, described in [P. Vyridis, {it Bifurcation in...

متن کامل

Variational Calculations for the Relativistic Interacting Fermion System at Finite Temperature: Application to Liquid 3He

In this paper, at first we have formulated the lowest order constrained variational method for the relativistic case of an interacting fermion system at finite temperature. Then we have used this formalism to calculate some thermodynamic properties of liquid in the relativistic regime. The results show that the difference between total energies of relativistic and non-relativistic cases of liqu...

متن کامل

On a Volume Constrained Variational Problem

Existence of minimizers for a volume constrained energy

متن کامل

A Variational Setting for Volume Constrained Image Registration

We consider image registration, which is the determination of a geometrical transformation between two data sets. In this paper we propose constrained variational methods which aim for controlling the change of area or volume under registration transformation. We prove an existence result, convergence of a finite element method, and present a simple numerical example for volume-preserving regis...

متن کامل

Sequential Optimality Conditions and Variational Inequalities

In recent years, sequential optimality conditions are frequently used for convergence of iterative methods to solve nonlinear constrained optimization problems. The sequential optimality conditions do not require any of the constraint qualications. In this paper, We present the necessary sequential complementary approximate Karush Kuhn Tucker (CAKKT) condition for a point to be a solution of a ...

متن کامل

PROJECTED DYNAMICAL SYSTEMS AND OPTIMIZATION PROBLEMS

We establish a relationship between general constrained pseudoconvex optimization problems and globally projected dynamical systems. A corresponding novel neural network model, which is globally convergent and stable in the sense of Lyapunov, is proposed. Both theoretical and numerical approaches are considered. Numerical simulations for three constrained nonlinear optimization problems a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998